\(\int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [855]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 249 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 b \left (7 a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 a^3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}-\frac {8 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d} \]

[Out]

-2/15*b*(7*a^2+8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/
(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a^3/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2/5*cos(d*x+c)^(3/2
)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a/d-8/15*b*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a^2/d+2/15*(
9*a^2+8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1
/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a^3/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {4349, 3948, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {8 b \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}{15 a^2 d}-\frac {2 b \left (7 a^2+8 b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 a^3 d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d} \]

[In]

Int[Cos[c + d*x]^(5/2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*b*(7*a^2 + 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(15*a^3*d*Sqrt
[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*(9*a^2 + 8*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/
(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(15*a^3*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) - (8*b*Sqrt[Cos[c + d*x]]*Sqr
t[a + b*Sec[c + d*x]]*Sin[c + d*x])/(15*a^2*d) + (2*Cos[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/
(5*a*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3948

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Cos[e +
 f*x]*(d*Csc[e + f*x])^(n + 1)*(Sqrt[a + b*Csc[e + f*x]]/(a*d*f*n)), x] + Dist[1/(2*a*d*n), Int[((d*Csc[e + f*
x])^(n + 1)/Sqrt[a + b*Csc[e + f*x]])*Simp[(-b)*(2*n + 1) + 2*a*(n + 1)*Csc[e + f*x] + b*(2*n + 3)*Csc[e + f*x
]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {4 b-3 a \sec (c+d x)-2 b \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx}{5 a} \\ & = -\frac {8 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} \left (9 a^2+8 b^2\right )+a b \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{15 a^2} \\ & = -\frac {8 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d}+\frac {\left (\left (9 a^2+8 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{15 a^3}-\frac {\left (2 \left (-a^2 b+\frac {1}{2} b \left (9 a^2+8 b^2\right )\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 a^3} \\ & = -\frac {8 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d}-\frac {\left (2 \left (-a^2 b+\frac {1}{2} b \left (9 a^2+8 b^2\right )\right ) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{15 a^3 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (9 a^2+8 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{15 a^3 \sqrt {b+a \cos (c+d x)}} \\ & = -\frac {8 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d}-\frac {\left (2 \left (-a^2 b+\frac {1}{2} b \left (9 a^2+8 b^2\right )\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{15 a^3 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (9 a^2+8 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{15 a^3 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = -\frac {2 b \left (7 a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 a^3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}-\frac {8 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d}+\frac {2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.19 (sec) , antiderivative size = 340, normalized size of antiderivative = 1.37 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 a (b+a \cos (c+d x)) (-4 b+3 a \cos (c+d x)) \sin (c+d x)+\frac {2 \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left (i \left (9 a^3+9 a^2 b+8 a b^2+8 b^3\right ) E\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-i a \left (9 a^2+2 a b+8 b^2\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+\left (9 a^2+8 b^2\right ) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\sec ^{\frac {3}{2}}(c+d x)}}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^(5/2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*a*(b + a*Cos[c + d*x])*(-4*b + 3*a*Cos[c + d*x])*Sin[c + d*x] + (2*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(3/2)*
(I*(9*a^3 + 9*a^2*b + 8*a*b^2 + 8*b^3)*EllipticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/
2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - I*a*(9*a^2 + 2*a*b + 8*b^2)*EllipticF[I*ArcSinh
[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b
)] + (9*a^2 + 8*b^2)*(b + a*Cos[c + d*x])*(Sec[(c + d*x)/2]^2)^(3/2)*Tan[(c + d*x)/2]))/Sec[c + d*x]^(3/2))/(1
5*a^3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2306\) vs. \(2(279)=558\).

Time = 9.74 (sec) , antiderivative size = 2307, normalized size of antiderivative = 9.27

method result size
default \(\text {Expression too large to display}\) \(2307\)

[In]

int(cos(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/15/d/((a-b)/(a+b))^(1/2)/a^3*(4*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))
*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)-16*EllipticF(((a-b)
/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)-18*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-
b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+16*Ellipt
icE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)+8*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-
(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^
2+2*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2-8*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+cs
c(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^2
*cos(d*x+c)^2-9*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2-8*EllipticE(((a-b)/(a+b))^(1/2)*(-c
ot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))
^(1/2)*b^3+3*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)^3*sin(d*x+c)+2*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(
d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b-8
*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2-9*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b
)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b+8*EllipticE(((a
-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*a*b^2-18*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2
))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)-9*EllipticF(((a-b)/
(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*a^3+8*((a-b)/(a+b))^(1/2)*b^3*sin(d*x+c)+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3+
9*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2-8*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*
x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*cos(d
*x+c)^2-9*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c
))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2+18*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+
c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*
a^3*cos(d*x+c)-16*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)-4*((a-b)/(a+b))^(1/2)*a*b^2*sin(d*x+c
)+3*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)^2*sin(d*x+c)+9*((a-b)/(a+b))^(1/2)*a^2*b*sin(d*x+c)+9*((a-b)/(a+b))^(1/
2)*a^3*cos(d*x+c)*sin(d*x+c)-((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x+c)*sin(d*x+c)-((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x
+c)^2*sin(d*x+c)+4*((a-b)/(a+b))^(1/2)*a*b^2*cos(d*x+c)*sin(d*x+c))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b
+a*cos(d*x+c))/(cos(d*x+c)+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 456, normalized size of antiderivative = 1.83 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {6 \, {\left (3 \, a^{3} \cos \left (d x + c\right ) - 4 \, a^{2} b\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 4 \, \sqrt {2} {\left (-3 i \, a^{2} b - 4 i \, b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 4 \, \sqrt {2} {\left (3 i \, a^{2} b + 4 i \, b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, \sqrt {2} {\left (-9 i \, a^{3} - 8 i \, a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, \sqrt {2} {\left (9 i \, a^{3} + 8 i \, a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{45 \, a^{4} d} \]

[In]

integrate(cos(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/45*(6*(3*a^3*cos(d*x + c) - 4*a^2*b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)
 - 4*sqrt(2)*(-3*I*a^2*b - 4*I*b^3)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^
3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) - 4*sqrt(2)*(3*I*a^2*b + 4*I*b^3)*sqrt(a)*weierst
rassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c)
+ 2*b)/a) - 3*sqrt(2)*(-9*I*a^3 - 8*I*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b -
 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) +
 3*I*a*sin(d*x + c) + 2*b)/a)) - 3*sqrt(2)*(9*I*a^3 + 8*I*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/
a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3
*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)))/(a^4*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(5/2)/sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(5/2)/sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{5/2}}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(cos(c + d*x)^(5/2)/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^(5/2)/(a + b/cos(c + d*x))^(1/2), x)